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INTRODUCTION 

The first six months of research on NASA Grant  NGR-22-009-078 
investigated the application of statistical techniques to the experimental 
and analytical study of inertial guidance components. 

The completed research involved both instrumentation and data 
collection. Instrumentation required for support of the inertial compon- 
ent was obtained, modified or built, after which drift data of an inertial 
Y I  svroscope was obtained. These data consist of torque-to-balance meas- 
urements taken at hourly intervals for over 450 hours. A second test 
consisted of measurements taken over approximately the same number 
of 15 minute intervals. 

Concurrent with these activities an examination of the applica- 
bility of Markov process theory was conducted. 
part of a graduate student, Lt. John R. Cooper, H. M. S. Royal Navy, 
were conducted urping already available gyro drift test data and adapting 
previously established modelling techniques. 
Master's thesis entitled, 'A Statistical Analysis of Gyro Drift Test 

Dak,"  

Parallel efforts on the 

This resulted in a 

The appendices explain definitions and the mathematical mani- 
pulations involved in various types of Markov chains. The notation io 
mainly that used in mFiaite Markov Chains" by John G. Kemeny and 
J, Laurie Snell published by Van Nostrand Company, Inc. Princeton, 
New Jersey. Other sources for some of the applicable set theory 
concepts a r e  aMarkov Chains with Stationary Transition Probabilitiesa 
by icai hi chug pii"p~s~ied by ~ ~ ~ i ~ ~ ~ ~ - ~ ~ r ~ ~ k ~ ,  serk, G ~ ~ = ~ ~ ~ ~ ,  

and 
W. Feller published by J. Wiley and Sons, Inc., New York, New York. 

Introduction to Probability Theory and Its Application" by 

All proofs regarding results stated in these appendices a r e  
contained in these references. 
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1. INSTRUMENTATION AND DATA COLLECTION 

The collected data were concerned with small variations in 
inertial gyroscope performance over a period of seven hundred hours. 
Consequently, all supporting electronics and test  instrumentation had 
*#. L, ---*Ll.. -s la-- LA-- ..&-L:l:&-- mL t- ----- -- - - *  
L u  uq +.oy.ourG uL rurre L s a a u  m a u u + c y .  ~ A A z  u a c a u a a  G U ~ L L ~ U L A ~ U L  Livesti-  
gated was a GG- 159 gyroscope provided on a'.loan basis by 
Aeronautical Division of Honeywell, Inc. * Minneapolis, Minnesota. 
A gyro mounting fixture and electronic circuit designs used previously 
fo r  testing similar gyros was provided by the M, L T. Instrumentation 
Laboratory's "Skipper B" group under the direction of Mr .  Richard E. 
Marshall. The circuitry was re-designed and adapted to the purposes 
of this investigation. 

Fig. 1 is a block diagram of the manner in which the gyro- 
scope was tested. For  any constant rate input, a compensation current 
was applied to the torque generator thereby cancelling the rate input. 
Deviations from this constant rate input (e. g., gyro drift) were com- 
pensated by a closed loop around the gyro. The compensation current 
in this control loop is proportional to the gyro drift. 

During long-term operation of the gyroacope, parameters suck 
as gyro drift, wheel voltage, wheel power and gyro temperature were  
recorded, Of these, only gyro drift could be adequately recorded since 
fhctuatianr in the ofher parameters were  80 small as to be unmeas- 
urable without an order to magnitude improvement in instrumentatiot 
sensitivity. 
in circuit design o r  an equipment procurement exceeding the available 
funding. 
research goal was basically to modal gyro drift. 

Such improvement would require either a major effort 

These means were unjustified in view of the fact that the 

Collected data consisted of approximately four consecutive 
weeks of continuous test with useable data for 6 , 7 , 9  and 4 consecu- 
tive day intervals. Interruptions in useable data occurred because: 
Qi t = a  
temperature to fall from 70°F to 55O F; once the data recorder ran, 

out of paper in the early morning hours; and once the recording 

occ~si+as air cwndi&kiier -iris-operration caused the room 
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interval was changed from hourly to quarter-hourly (during the last 
four days). In all of these cases the gyroscope was oper&;ag coa- 
tinuously and only the data recording process was interrupted. This 
resulted in approximately 450 hourly gyro drift rne&eiizsimzztta zz4 
+pz~xL~~fely the same number of quarter-hour interval measurements. 
These data a r e  at present being analyzed and wi l l  be reported later. 

Future Effort 

FUri2iei- ZGS: *=,.ill he rliterted towards the analysis of data 

already acquired. NASA-ERC has suggested that the primary research 
goal of this grant shift to computational support for general theoretical 
navigaion and guidance studies conducted at EAL. It is anticipated 
that by the end of the present period of the grant such a shift wil l  be 
accomplished. 
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2. GYRO DRIFT RATE AS A MARKOV CHAIN 

The application of Markov chain theory to gyro drift rate, o r  to 
zzy mnanurement which has a random drift, is based on the assumption 
that incremental drift rate is a stationary random process. That is, 
given an initial drift rate, the change z n  d r s t  rare over the nexi hztgrvul 

is independent of all the previous intervals except the immediately 
preceding interval, This is the description of a first order Markov 
a- n-Te - ns- If the drift rates a re  defined as the states, o r  events, the 
transitions to any other states (the incremental drift rates) are the basee 
for the transition matrix. If the  statistics of the incremental drift rate 
can be determined, the transition mat r ix  can be obtained. 
Each element of the .trans.ition.matri+is khaprohability of 

occurrence of a change in the magnitude of drift rate (incremental drift 
rate) equal to the difference between the two drift rate states, the present 
drift rate and the next ensuing drift rate, 
known than the entire statistical process is knowngiws the initial condi- . - i 

tions. 

- . .  .. 
r. 

Once the transition matrix is 

The primary problem in the case of gyro drift is establishing 
whether incremental drift rate is a stationary random procese. Prev- 
ious work done by Weinstock(l) and Cooper'') establish that this assump- 
tion is not valid except for certain condition8 which were dependent on 
gyro orientation and data time intervals. In Cooper's case there was 

cause to suspect the data since it was not considered a true random 
sample. The data were obtained from 50 gyroscopes which had all 
passed a specific test of their drift rate within a given tolerance. In 
this way, the data were not a true sample since data from a gyroscope 
with poor performanceare elimiaated. It is therefore necessary to obtain 
data according to some true statistical plan, 
place a single gyro in a fixedorientation and collect drift data until a 
sample is obtained which is large enough to yield a good approximation 
for the transition probabilities. 

The best method ie to 

With data taken specifically for this purpose, the doubts encoun- 
tered using other data w i l l  be removed. 
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The application of the Markov Chain theory may be extended to 
These include gyro drift situations not described by &e eimple case. 

would include: 
1. The investigation of using shorter intervais io r  &tz 

2, The application of higher order Markov processes, that is, 

- 1 - - -A: -- 
CVIIGLbaUrr. 

the effect on gyro drift may be examined as a function of what has 
occurred two o r  more intervals previously. 

according to some statietically dist  ributed faction. 
3. The effect of making the length oi &e Gaia invezv&k t l , ~ l ~ g t  

4. The analysie of data from gyroscopes which have passed a 
given standard test as a Markov chain with absorbing states. 

probability distributions, 
5. The analysis of Markov chains with different transition 
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APPENDIX A 

SIMPLE MARKOV CHAIN THEORY 

- - -  -- -La:.. * d.=#:nd a a  1 rp~csss in which -. .. . i-ne NlarKvv P ~ Y C G P P  VI &.ILQII. ' r i  yIIy-.- -- 
the state at a future time has a conditional probability dependent only 
on the state it is in at the present time. This definition permits both 
continuous and discrete chains, The latter type will be of more inter- 
est in the following discussion, If the magnitudes of the changes in 
state a re  reBi;rici=& tu -=;$ &sgcs, *.e anae;*l m a m e  Markov chain is -c----- --- 
then sometimes referred to as the random walk. 

The sequence described by a given Markov chain is a function 
Let of the probabilities fo r  transition from a given state to another. 

E. be the event that a certain state exists at some time (or trial) n, 
then defining p.. as the conditional probability that given Ei has occurred 

Jn 
11 

that E. wil l  occ& on the next time interval (or trial) then J 

since the p.. (called transition probability) is assumed stationary or 
time invariant. This notation permits the probability for a given se- 

1J 

E . . a E. to be written: 
Ejl' j2 Jn 

quence .Ejo, 

C . )  

P f EjoEjl EjZ Ejn]  = a  jo  Pjo j l  Pjl j 2  Pjm-2 jm- 1 Pjm- 1 jm 

where a is the probability of being in the given initial state, 
j0 
Given a number of states and their related transition probabilities 

the transition from a given state into any other state including itself 
can be written 

n 
f-. - Pi - Pi1 + Pi2 + Pi3 + . = L pij = 1 . 
j = l  
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Since the transihon &us! take place, the s u m  of the probabilities is one. 
This result can be expressed in the form of a rtlatrix 

called the transition matrix which expresses the transition probabilities 
from any given state to any other state in compact form. The row sums 
equal one because transition from a given state must occur as expressed 
previously. The transition matrix and the initial distribution completely 
define a Markov chain. 

Given an initial distribution ( E the distribution after one trial io 
is the matrix product 

This process may continued at will ,  resulting in 

This shows that the higher transition probabilities-the probability of a 
change from a given state to another given state in a particular number 
of trials- may be obtained by raising the transition matrix to the power 
equal to the desired number of trials. 

At this point, the concepts of closed sets, transient and persist- 
ent states and absorbing states a r e  of interest. 

A closed set is defined as set of states from which a state extern- 
nal to this set can not be reach. This set may be accessible from the 
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outside but once entered €he€e is aci exit. 
state, it is called an absorbing state. 
may contain more than one ciosed set ,  vGitLki a zksec! =et, trazdtians 
are possible between every pair of states but not necessarily in one step. 
These states in a closed set a r e  further categorized by the probability 
whether starting from a particular state the system returns to that state. 
If this is a certainty, the state is called persistent, or, in other words, 
the state continually recurs in the seqwzu<c. 

tent state recurrence is therefore equal to one. 
probabilities are less than one are  called transient because there is a finite 
probability that these states may never recur. 

If a cbsed set contains one 
The set of all states in a system 

TZz. i;r;3b&ilie* J fn* --- c -  n*rnin- 

States whose recurrence 

.I 
> 

Eo 1 ' *bo, Po1 1 Po2 3 

E1 I p10 p11 I p12 p13 

The following transition matrix will indicate the relationships to 
the previous definitions, 

4 5 

p14 p15 

I Eo 

p4 1 

E4 E5 1 ::: p51 

E3 1 E4 

p42 p43 p44 p45 

p55 p52 p53 

E5 

model4 
- - 

E-or Ll, a closed set, trazeition prnbahilities to the other 
states a r e  all zero 

- p i n = O ,  - n > l  
Pon 
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For  C2, transitions to Cj a re  forbidden 

Similarly for C3, transitions a r e  possible only to the preceding 
The resulting transition matrix is sets, 

If C2 were another set of persistent states, the sub-matrix of 
transition probabilities to C1 would be eero. 

By reducing the transition matrix to the indicated partitioned 
form 

the effect of taking powers of the matrix can be seen. 
individually will be raised to the n power and the new "RR would then 

represent the higher transition probabilities from set to set. 

The "Cm matrices 

By the use of transition matrices, various types of chains may 
be studied. Of particular interest a r e  regular Markov chains and 
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absorbing Markov Cha-hs. 
the latter containing absorbing states. 

The former having nb transient states and 

The types of information which can be determinea are: 
"I-- c+*-+;ng -u 4 2  c given ntate what is the probability of reaching 

W h a t  is the meah number of steps required to pass between two 

What is the variance of the mean number ot steps require6 io 

another given state in n steps? 

given states? 

pass between the twb given states? 

These questions may be related to gyro drift as follows: 
Given an initial state of gyro drift what is the probability of 

exceeding a given limit in n steps? 
What is the mean number of steps required to pass from a given 

gyro drift to a given limit? 

pass from a given gyro drift to a given limit? 
W h a t  is the variance of the mean number of steps required to 
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*2 

=3 

E4 

MARKOV CHAIN Wf?" ABSORBWG STA'I'ES 

p20 E21 p22 23 p24 

p30 p3 1 '3 2 p33 p34 

In the pfevious section the Corrcepts tf c k s d  sets drrd persis- 
tent and transient states were discussed. In this section the discussion 
will  cover a particular type of Markov chain. 
c ~ y v  and lower limits, two closed set composed of one state each i. e., 
absorbing states. The transition matrix is: 

This chain wil l  have as 

I 

. 

By re-ordering and re-numbering the matrix may be arranged 
in canonic form to: 

I,. EO E2 E3 E4 

1 I O i  0 0 0 

E, i 0 i 0 Q 0 1 

or, in different notation, the partitioned matrix becomes 
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where I is the identity matrix and 0 is a matrix of all zero's. 

The Fundamental Matrix for Absorbing Markov Chains 

Since Qn tends to zero for an absorbing cham, then ii-ur c., -1 , 
then the mean number of steps t (including the first) required to reach 
an absorbing state starting from a transient state is 

where 5 is a column vector of 1's 

The variance of t is: 

where T = N , f  
T = the matrix t with each of its elements squared (not 

equal to [ t ] sq 2 unless t is a diagonal matrix). 

Fo r  the probability that starting in a transient state the system 
ends up in an absorbing state: 

The r elationship between Markov chains .with aba@rbib&fiWes and 
gyro drift.ia.that this chain may model- data obtainedf rom gyroscoR-which 
p a s  some gyrodrift" tes t  with a certain etandardcf performance. 
derived from those gyroscopes which have not passed the test, having 
been removed, may have the effect similar to a Markov chain with 
a absorbing states, The gyroscopes .having been rejected are abszrbed, 

so to speak, and a r e  no longer considered in the sample. 

The data 
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-APPENDIX C 

REGUULR MARKOV C W N  

c1 A ---..1*.. & G ~ Y * Y I  1fi--=kfiV &.+----- chain is a chain which has no transient states 
The regular chain has no absorbing states and has a single closed set. 

and after n steps the system may be in any of the states; there are no 
zeros in the transition matrix. 

- 
In this case, the transition matrix pn approaches a limit A as 

n increases. 
ponents, A has the property AP = PA = A and the A row vector is 
that probability vector which for large n gives the probability of 
being in a certain state. 

The matrix a has identical rows-: with all positive com- 

The Fundamental Matrix for Regular Chains 

As in the case of Markov chains with absorbing states, regular 
Markov chains have fundamental matrices associated with them. 

The fundamental matrix 2 for the Markov chain defined by the 
transition matrix P is defined as 

z = f I - ( p - A )  1.' 

where I is the identity matrix and A is the limiting matrix of P. 

The fundamental matrix may then be used to obtain the maan 
first passage time matrix M. The mean first passage time matrix 
is &e matrix of the avetage tL?,*e sf (zveraqe number of steps) the 
first passing into a given state starting from a given state (f.)  J 

m = M i [ f j  3 i j  

M ( I -  z + 

- 14 - 
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Z 
hatrix 2 and D is the diagonal matrix with components dii = - 
where ai is the ith component of A. 

is the diagonal matrix with components 2.. of the fundamental 
1 dg 11 

=i 
The variance ot' M ie i o u d  kjj 

W = { M i  [ f i 2 ]  ] = M(2ZdgD-I )  t 2 [ZM-E(ZM)dg] 

This type of Markov chain may be applicable to the general 
case of gyroscope drift data. The general case wouici conkik &:a 
which would be bounded but with all levels of drift a possibility, and 
all levels likely to recur. 
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